450 research outputs found

    Proceedings of the Workshop on Adaptation of Plants to Soil Stresses

    Get PDF
    Sustainable production of food and forage with a focus on plant adaptation to stress environments will be a continued priority for developing countries in the future. Since many areas of the world which support substantial human populations are drought prone, such as the subsaharan African zone and others, the primary focus has been on drought. However, one of the greatest restraints to sustainability of agriculture worldwide is the lack of sufficient soil nutrients for crop growth, or other soil constraints such as acidity or salinity which hinder crop production substantially. Optimizing soil fertility or amending acid and saline soils to achieve high production is difficult in areas of low economic stability since inputs are costly or quite often technically not feasible. The other obvious alternative to increase stability in stress areas is by genetic improvement of crops. Dr. Donald L. Plucknett, in a recent lecture on science and agricultural transformations, stated that while not all yield gains in the Green Revolutions can be attributed to plant breeding, it is doubtful such gains would have taken place without the new varieties or hybrids . Development and release of new and improved germplasm is probably the most economic method of technology transfer currently available. According to Dr. Plucknett, most studies indicate about half of yield gains can be attributed to genetic improvements. This statistic is undoubtedly argued in many circles, but regardless of the final figure, gains from genetic improvement are substantial

    Methods for Evaluating Social Vulnerability to Drought

    Full text link
    Social vulnerability to drought is complex and it is reflected by society’s capacity to anticipate, cope with and respond. Here we estimate these aspects of social vulnerability, evaluating the natural resource structure, the economic capacity, the human and civic resources, and aspects of agricultural innovation. These factors are components of a vulnerability index and they can be weighted appropriately in computing the final value of the index. In this chapter we present the results of the index under two valuation scenarios. For Scenario 1 all components are valued equally. For Scenario 2 the human resources component is given 50% of the weight, the economic and natural resource components are given 20% of the weight each, and the agricultural technology is given 10% of the weight. This reflects the assumption that a society with institutional capacity and coordination and mechanisms for public participation is less vulnerable to drought and that agriculture is only one of the sectors affected by drought. The vulnerability index establishes robust conclusions since the range of values across countries does not change with the assumptions under the two scenarios

    Chemical genomics reveals histone deacetylases are required for core regulatory transcription

    Get PDF
    Identity determining transcription factors (TFs), or core regulatory (CR) TFs, are governed by cell-type specific super enhancers (SEs). Drugs to selectively inhibit CR circuitry are of high interest for cancer treatment. In alveolar rhabdomyosarcoma, PAX3-FOXO1 activates SEs to induce the expression of other CR TFs, providing a model system for studying cancer cell addiction to CR transcription. Using chemical genetics, the systematic screening of chemical matter for a biological outcome, here we report on a screen for epigenetic chemical probes able to distinguish between SE-driven transcription and constitutive transcription. We find that chemical probes along the acetylation-axis, and not the methylation-axis, selectively disrupt CR transcription. Additionally, we find that histone deacetylases (HDACs) are essential for CR TF transcription. We further dissect the contribution of HDAC isoforms using selective inhibitors, including the newly developed selective HDAC3 inhibitor LW3. We show HDAC1/2/3 are the co-essential isoforms that when co-inhibited halt CR transcription, making CR TF sites hyper-accessible and disrupting chromatin looping

    Photoelectrochemical properties of mesoporous NiOx deposited on technical FTO via nanopowder sintering in conventional and plasma atmospheres

    Get PDF
    Nanoporous nickel oxide (NiO x ) has been deposited with two different procedures of sintering (CS and RDS). Both samples display solid state oxidation at about 3.1 V vs Li+/Li. Upon sensitization of CS/RDS NiO x with erythrosine b (ERY), nickel oxide oxidation occurs at the same potential. Impedance spectroscopy revealed a higher charge transfer resistance for ERY-sensitized RDS NiO x with respect to sensitized CS NiO x . This was due to the chemisorption of a larger amount of ERY on RDS with respect to CS NiO x . Upon illumination the photoinduced charge transfer between ERY layer and NiO x could be observed only with oxidized CS. Photoelectrochemical effects of sensitized RDS NiO x were evidenced upon oxide reduction. With the addition of iodine RDS NiOx electrodes could give the reduction iodine → iodide in addition to the reduction of RDS NiO x . p-type dye sensitized solar cells were assembled with RDS NiO x photocathodes sensitized either by ERY or Fast Green. Resulting overall efficiencies ranged between 0.02 and 0.04 % upon irradiation with solar spectrum simulator (Iin : 0.1 W cm −2 )

    Climate Policy Under Fat-Tailed Risk: An Application of Dice

    Get PDF
    Uncertainty plays a significant role in evaluating climate policy, and fat-tailed uncertainty may dominate policy advice. Should we make our utmost effort to prevent the arbitrarily large impacts of climate change under deep uncertainty? In order to answer to this question, we propose a new way of investigating the impact of (fat-tailed) uncertainty on optimal climate policy: the curvature of the optimal carbon tax against the uncertainty. We find that the optimal carbon tax increases as the uncertainty about climate sensitivity increases, but it does not accelerate as implied by Weitzman's Dismal Theorem. We find the same result in a wide variety of sensitivity analyses. These results emphasize the importance of balancing the costs of climate change against its benefits, also under deep uncertainty. © 2013 Springer Science+Business Media Dordrecht

    The Cancer Genomics Resource List 2014

    Get PDF
    Context.— Genomic sequencing for cancer is offered by commercial for-profit laboratories, independent laboratory networks, and laboratories in academic medical centers and integrated health networks. The variability among the tests has created a complex, confusing environment. Objective.— To address the complexity, the Personalized Health Care (PHC) Committee of the College of American Pathologists proposed the development of a cancer genomics resource list (CGRL). The goal of this resource was to assist the laboratory pathology and clinical oncology communities. Design.— The PHC Committee established a working group in 2012 to address this goal. The group consisted of site-specific experts in cancer genetic sequencing. The group identified current next-generation sequencing (NGS)–based cancer tests and compiled them into a usable resource. The genes were annotated by the working group. The annotation process drew on published knowledge, including public databases and the medical literature. Results.— The compiled list includes NGS panels offered by 19 laboratories or vendors, accompanied by annotations. The list has 611 different genes for which NGS-based mutation testing is offered. Surprisingly, of these 611 genes, 0 genes were listed in every panel, 43 genes were listed in 4 panels, and 54 genes were listed in 3 panels. In addition, tests for 393 genes were offered by only 1 or 2 institutions. Table 1 provides an example of gene mutations offered for breast cancer genomic testing with the annotation as it appears in the CGRL 2014. Conclusions.— The final product, referred to as the Cancer Genomics Resource List 2014, is available as supplemental digital content

    Interaction between SNAI2 and MYOD enhances oncogenesis and suppresses differentiation in Fusion Negative Rhabdomyosarcoma

    Get PDF
    Rhabdomyosarcoma (RMS) is an aggressive pediatric malignancy of the muscle, that includes Fusion Positive (FP)-RMS harboring PAX3/7-FOXO1 and Fusion Negative (FN)-RMS commonly with RAS pathway mutations. RMS express myogenic master transcription factors MYOD and MYOG yet are unable to terminally differentiate. Here, we report that SNAI2 is highly expressed in FN-RMS, is oncogenic, blocks myogenic differentiation, and promotes growth. MYOD activates SNAI2 transcription via super enhancers with striped 3D contact architecture. Genome wide chromatin binding analysis demonstrates that SNAI2 preferentially binds enhancer elements and competes with MYOD at a subset of myogenic enhancers required for terminal differentiation. SNAI2 also suppresses expression of a muscle differentiation program modulated by MYOG, MEF2, and CDKN1A. Further, RAS/MEK-signaling modulates SNAI2 levels and binding to chromatin, suggesting that the differentiation blockade by oncogenic RAS is mediated in part by SNAI2. Thus, an interplay between SNAI2, MYOD, and RAS prevents myogenic differentiation and promotes tumorigenesis
    • …
    corecore